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We investigate the role of buoyancy force on the generation and decay of random 
motion in a homogeneously stratified fluid by means of direct numerical simulations 
(DNS) of the dynamic and thermodynamic equations. The simulations start from a 
fluid which is at  rest but has appreciable temperature fluctuations. Therefore the flow 
initially evolves by extracting energy from the potential energy field. Three free 
parameters, the Reynolds number Re, the Prandtl number Pr and the stratification 
number St, characterize the flow. Among these numbers the stratification number, 
St = (ZTo/Po) (dT,/dz), is the most crucial one for the investigated problem. Here 
Th and I, are the initial r.m.s. temperature and the initial integral temperature 
lengthscale, respectively, and dT,/dz is the background stratification. St is a measure 
of the strength of background-temperature gradient compared to the initial mean 
fluctuating temperature gradient in the fluid. 

A critical stratification number of order one is found to separate an oscillating, 
non-turbulent flow from flow states which exhibit features of turbulence. When 
Xt > 1, the statistics reveal a nearly linear and strongly anisotropic flow as typical for 
gravity waves but the flow-field variables behave randomly. When Xt < 1, i.e. when 
the initial gradient of fluctuating temperature exceeds the gradient of its background 
value, the available potential energy is sufficient to create nonlinear motions which 
resemble turbulence in many aspects. The properties of such a flow are a transient 
state of enhanced stirring and mixing, enhanced rates of dissipation of temperature 
fluctuations, and a quick return to isotropy. 

The stratification number is an easily measurable parameter in field experiments 
in the ocean as well as in the atmosphere. Therefore St may be a useful indicator of 
whether a flow regime contains sufficient potential energy to create turbulence. 

1. Introduction 
The final stage of decaying turbulence is a stably stratified fluid is commonly 

considered as being not turbulent because the energy transfer from large to small 
scales is nearly zero and vertical turbulent mixing is negligible. However, it is the 
remnant of originally ‘active ’ turbulent motion. Such flows often exhibit almost 
vanishing velocity perturbations but still detectable temperature or other scalar 
fluctuations and are usually referred to  as ‘fossil’ turbulence (Woods et aZ. 1969; 
Nasmyth 1970; Gibson 1980). The process of ‘fossilization’ occurs when the 
molecular Prandtl number Pr of the fluid is of order one or larger (Gerz, Schumann 
& Elghobashi 1989; Gerz & Schumann 1991). Indeed, the existence of fossil 
turbulence in the oceanic thermocline where Pr M 8 is evident (e.g. Nasmyth 1970; 
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Munk 1981) but is also probable in air where Pr z 1 (Woods et al. 1969). The fossil 
turbulence may be frozen with respect to the mean flow (Nasmyth 1970) or may be 
embedded in and move with internal waves (Gibson 1980; Gerz et al. 1989). Although 
fossil turbulence has been considered as a non-mixing process, residual temperature 
fluctuations can create a buoyancy-driven heat flux a t  small scales (Gerz & 
Schumann 1991). In  fact, during the final stage of decaying turbulence in a stratified 
fluid, Lange (1974) found that the density fluctuations decay faster than they would 
solely by molecular diffusion. This indicates enhanced mixing during the final stage. 
Taking these previously reported results into consideration we focus our attention on 
the generation and decay of turbulence by buoyancy forces. Is the potential energy 
merely a sink of total energy of the flow (as usually considered) or are parts of it 
available and, hence, can participate in mixing ? 

In order to investigate this problem we decided to study the onset and evolution 
of turbulent flow from an idealized condition. The flow will be created solely from an 
excess of buoyancy due to temperature fluctuations with an initially motionless state 
everywhere. This initial condition of our study resembles an extreme case of ‘frozen 
fossil’ turbulence (Gibson 1991). Recently, Batchelor, Canuto & Chasnov (1992) 
considered a similar initial-value problem, but under unstratified conditions. 
Sanderson et al. (1991) simulated active and fossil turbulence numerically but 
focused on differences between DNS and the direct interaction approximation. Thus, 
no attempt on the same subject has appeared in the literature. 

The initial conditions used in our simulations are difficult to set up experimentally. 
Several laboratory experiments were designed in stratified salt-water tanks (e.g. 
Stillinger, Helland & Van Atta 1983; Itsweire, Helland & Van Atta 1986) and in 
thermally stratified wind tunnels (Lienhard & Van Atta 1990; Yoon & Warhaft 
1990) to study the decay of grid-generated turbulence under stable stratification. 
Riley, Metcalfe & Weissman (1981), MBtais & Herring (1989) and Gerz & Schumann 
(1991) considered the same type of flow numerically by means of DNS. 

Because the problem is difficult to study analytically as well as experimentally, we 
employed the method of DNS to solve the full set of Navier-Stokes and temperature 
equations by computer. The DNS technique resolves all dynamically relevant scales 
of the fluid down to the Kolmogorov length, properly. Hence, parameterization of 
subgrid scale turbulence is unnecessary. This advantage is paid for by a necessarily 
low Reynolds number of the flow. However, Yamazaki, Osborn & Squires (1991) 
suggest that DNS can mimic turbulent conditions in the oceanic thermocline well. 
Thus, the result of our simulations may also be applicable to turbulence in the 
thermocline. The role of buoyancy on the dynamics of small-scale turbulence will 
mainly depend on the initial excess of available potential energy and on the 
molecular Prandtl number in the flow. Several cases will be analysed in this respect. 
In the next section, the method and initialization will be described. In  $3  our 
simulation results are presented. They are discussed and compared with available 
laboratory data in $4. We debate the implication of our simulation in a geophysical 
context in $5. Our conclusions are summarized in the last section. 

2. Direct numerical simulation 
2.1. Governing equations 

The three-dimensional, incompressible Navier-Stokes and temperature equations for 
perturbation velocities (u, u ,  w) or (ul, u2, us) and perturbation temperature T are 
integrated numerically in time and in a cubic and periodic domain with side length 
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L and downstream, cross-stream (spanwise) and vertical coordinates (x, y, z )  or (xl, 
x2 ,x3)  using the Boussinesq approximation. Details of the numerical code can be 
found in Gerz et al. (1989). These equations and the continuity condition for our 
problem read in dimensional form 

au, a a Z u .  i ap 
at ax, ax; paxd 

-+-((u~u,) = V--?:---++gTS, (i = 1,2 ,3) ,  

aT a aZT dT, 
at axj ax; dx, 
-+-(up) = y--u3--, 

where p, a, g, v, and y represent constant values of density, volumetric expansion 
coefficient, gravity acceleration, kinematic viscosity, and thermal conductivity, 
respectively. The summation convention is used. The reference (mean) background 
temperature gradient dT,/dz is linear and, hence, provides a homogeneous forcing. 

2.2. Scaling quantities and normalization 
In order to normalize the results, we define a set of reference scales (marked by an 
asterisk) as dimensional scaling quantities which can easily be related to measured 
quantities in reality. Our previous set of scaling parameters (Gem & Yamazaki 1990) 
was diEcult to relate to real conditions. We express the density by the constant 
value p*, the timescale by one buoyancy period, 7* = 27c/N* (where N* is the 
BruntVaisala frequency), the temperature scale by the initial r.m.s.-temperature 
T* = (T); = T;, (where the bar denotes an ensemble, i.e. volume, average and the 
prime denotes the r.m.5. value). Lengths are scaled by the initial integral length of 
the isotropic temperature density spectrum (Hinze 1959) 

where S defines the shape of the temperature perturbation spectrum, and k = 
(ki + k i  + E:); is the magnitude of the wavenumber vector. The velocity scales as N*lz. 
With these scales of reference the normalized (non-dimensional) equations for the 
perturbation quantities read 

For simplicity, we use the same notation here as in the dimensional equations (1)-(3). 
We apply periodic boundary conditions in all three directions. The characterizing 
parameters of this system of equations are the integral-scale Reynolds number Re, 
the molecular Prandtl number Pr and the stratification number Xt which are defined 
as 
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Both the Reynolds and the Prandtl numbers follow the conventional interpretation 
of these numbers. The stratification number is defined in analogy to the shear 
number in sheared flows (e.g. Gerz et al. 1989) and specifies the importance of 
fluctuating temperature for the dynamics of our system. St can be interpreted in 
different ways. For example, if we assume that the initial fluctuating temperature 
gradient scales as T*/Z:, St is a measure of the strength of background-temperature 
gradient compared to the initial mean of fluctuating temperature gradient in the 
fluid. The stratification number also defines the ratio between the integral lengthscale 

and the Ellison lengthscale I, = T*/dT,/dz. Hence, St compares the mean size of 
eddies to the size of overturning eddies. A stratification number larger than one 
implies that the nonlinear interactions among the fluctuating quantities are small 
compared to the linear interactions between background stratification and perturbed 
flow (see (6)). For St < 1 ,  the nonlinear interactions become more important and may 
result in a transient state of turbulence. Buoyancy effects increase in the flow with 
increasing inverse stratification number St-l (see ( 5 ) ) .  The Cox number Co, commonly 
used in the oceanography community, is the ratio of the mean square of the 
fluctuating temperature gradient to the square of the mean temperature gradient. In 
our non-dimensional system Co is inversely proportional to the square of St, 

where aT/ax, is the non-dimensional gradient of fluctuating temperature. Note that 
we consider only non-dimensional quantities for the rest of this paper. 

2.3. Initialization 
The evolution of a stratified turbulent flow is determined by the initial excess of 
energy available to the system. In our idealized initial condition, the velocity 
fluctuations and, hence, the turbulent kinetic energy Ekin = @, are zero. The flow 
will be driven exclusively from an initial excess of available potential energy, ED,, = 
+St-2p .  With time, this imbalance will create Ekin which will be partly dissipated by 
viscous forces and partly retransformed into Epot where thermal conductivity further 
extracts energy. 

In  this study, we keep the Reynolds number Re fixed and vary the stratification 
number St and the Prandtl number Pr. Different values of St result in different values 
for the potential energy at time zero. The data and characteristic numbers at time 
of initialization are summarized in table 1. Cases, A ,  B,  C and H signify flows with 
Pr = 1 and different values for St. Cases D, E and F differ from cases A ,  B and C by 
Pr = 2. The same physical situation as in case E is described in case E but the latter 
provides a higher resolution of the computational domain. The three-dimensional 
temperature perturbation field with mean value Po is initialized by Gaussian random 
numbers and obeys the prescribed spectral shape 

where k is now the magnitude of the non-dimensional integer wavenumber vector 
and k ,  is the non-dimensional peak integer wavenumber. This spectral form S ( k )  is 
appropriate for the final period of decay of turbulence when the nonlinear energy 
transfer is small compared to the viscous dissipation. With the specifications of the 
spectrum (10) and the integral lengthscale (4) the initial integer peak wavenumber 
k,, becomes (87~); for our computational domain size which we take as 47c. 
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Box length L 
Peak wavenumber 3 
Turbulent kinetic energy Ekin  
Integral-scale Reynolds number Re 
Stratification number st 
Prandtl number Pr 
Temperature fluctuation T 
Integral length 1, 
Potential energy - 5 0 ,  

Cases A B C D 

ED,, 0.46 7.37 0.029 0.46 
st 1.00 0.25 4.00 1 .oo 
Pr 1 .o 1 .o 1 .o 2.0 

4n 
( 8 ~ ) ;  
0 

57.4 

0.96 
1 .o 

E E  F H 
7.37 0.029 1.84 
0.25 4.00 0.50 
2.0 2.0 1 .o 

TABLE 1 .  Non-dimensional data and characteristic parameters at time of initialization. The prime 
denotes an r.m.8. value. All simulations run with mesh 64, except case E with mesh 1283. 

DNS requires rather low Reynolds and Prandtl numbers for proper resolution of 
the small velocity and temperature scales (Reynolds 1990). The values of Re = 57.4 
for the Reynolds number and Pr = 1 for the molecular Prandtl number are small 
enough to ensure the correct resolution in a grid of mesh 643. Simulations with Pr = 

2 have been performed at 64 and 128mesh in each direction (cases E and E'). 
Whereas all spectra are very well resolved with 128mesh grids, some potential 
energy and dissipation rate piled up at the largest resolved wavenumbers with a 64 
mesh resolution and Pr = 2. These effects of resolution on spectral and spatial 
statistics will be discussed in $4.4. 

Although rather small, a value of R e  z 60 may still be reasonable in the oceanic 
thermocline (Yamazaki et al. 1991). However, for the selected value of R e ,  realistic 
values of the Prandtl number in the ocean (Pr M 8) are, at  present, beyond the 
capability of available computer technology. Nevertheless, effects of a variation of 
small values of Pr can be studied and the results may be extrapolated to more 
realistic values of Pr in the ocean. 

A rather large box size L relative to the integral lengthsoales of turbulence is 
required to allow the length to grow in time without being influenced by the periodic 
boundaries of the domain. On the other hand, for a given resolution, L should be 
small enough to resolve also the smallest scales in the domain. The selected value of 
L = 4n accounts for both constraints and remains unchanged for all cases A-H. 

All cases have been integrated up to approximately three buoyancy periods. We 
used a time step of 8 Ax, Ax = L/mesh, and performed the simulations on the Cray- 
YME computer at DLR, Germany. A typical run on one processor took 1160 s CPU 
time for 1920 timesteps. 

3. Results 
3.1. Energy budgets 

The volume averaged, non-dimensional balance equations of Ekin, E,,, and the total 
energy Etot = Ekin + Epot read for homogeneously stratified flows 
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FIGURE 1. Kinetic Eki,, available potential E,,, and total energy E,,, normalized by the initial value 
EtOto vs. time t in buoyancy periods for (a) case A ,  ( b )  case B and (c) case C. -, Eki,/EtotO; ---, 
EPOt/EtOtO~ ---, Et,JEtoto. 

where 

are the dissipation rates of Ekin and Eppot, respectively. The heat flux term 
transforms energy between kinetic and available potential energy reservoirs. The 
rate of transformation is weighted by the inverse stratification number St-l. 
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10-3. 

- 1.3 

Figure 1 plots the temporal evolution of kinetic, potential and total energy for 
cases A ,  B and C. To emphasize the different flow evolutions we normalized the 
quantities by the respective initial values of the total energy. Evolutions are shown 
versus non-dimensional time in buoyancy periods t = time/r* = time (N*/27c). 
According to (1  i ) ,  Epot decays in time where the buoyancy driven motions begin and 
the flow gains kinetic energy Ekin. After approximately 0.25 buoyancy periods, 
Ekin (EPot) is maximum (minimum) and the process is reversed. The total energy 
Etot decays monotonically owing to dissipation effects. Differences between the cases 
show up in strength, duration and period of the oscillations of Ekin and Epot. In case 
A three oscillation periods can be distinguished with 71 = 72 = 0.52 and 73 = 0.80. In 
case B no full period can be resolved and case G reveals five periods with slightly 
decreasing intervals from 71 = 0.54 to r3-5 = 0.50. The differences in the decay rates 
of E,,, between cases A ,  B and C are remarkable (figure 2).  Whereas in cases A and 
C the decay rates of E,,, increase with time, we notice that, in case B,  Etot first 
declines rapidly until t x 1 .0 and then eventually approaches a smaller decay rate of 
t-’.3. This value resembles a typical decay rate of isotropic turbulence as measured 
in various laboratory experiments (Comte-Bellot & Corrsin 1966 ; Warhaft & Lumley 
1978). 

The dissipation rates of kinetic energy and available potential energy, E and x, for 
cases A ,  B and G evolve similarly as their respective energies (figure 3). However, x 
for case B has a local minimum at t x 0.08 before it rises again to its maximum value 
at t x 0.16. The reason is that the initialization process provides a Gaussian 
distribution of the temperature fluctuations in wavenumber space. Thus, the flow 
field is close to linear initially and the temperature fluctuations at  small scales are not 
fed by those at  large scales. As a result, x decreases until the nonlinearity of the flow 
(i.e. the energy transfer from large to small scales) is fully developed. This is the case 
a t  t x 0.1 when x rises again. The process also happens in cases A and C and can be 
recognized in a slight change of the decay rate of x. 

The r.m.s. quantities of velocity and temperature are depicted in figure 4. The 
figure illustrates that initially the kinetic energy is predominantly stored in the 
vertical velocity component w. Pressure forces feed both horizontal components u 
and v ,  owing to the continuity condition. Note that all flows are perfectly isotropic 
in the horizontal directions, u’ = v’, because of the flow symmetry. For cases A and 
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FIGURE 4. Root mean square values of velocity components u, v, w and temperature T vs. t for (a) 
case A ,  ( b )  case B and (c) case C. Note the different ordinate scalings. -, u'; --, v'; --- 7 w'; 
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FIGURE 5. Vertical cross-sections through the instantaneous flow at cross-stream position y = 9.42 
a t  times (a )  t = 0.08 and ( b )  t = 0.24 for case A. The contours mark isovalues of the temperature 
perturbation field T’; solid (dashed) contours indicate ‘hot’ (‘cold ’) fluid between -2.7 and 2.7 ; the 
contour interval is 0.6. The arrows indicate velocity vectors (u, w) with magnitude between 0.2 
and 2. 

(a) 12.57 

z 6.28 

0 

FIGURE 6. Same as figure 5 for case B with velocity magnitude between 0.8 and 8. 
n 

C we observe that u‘ and v’ remain smaller than w’ during the entire simulation 
period. On the other hand, for case B, u’ and v’ exceed w‘ a t  t = 0.45, and all 
quantities stay a t  about the same intensity for the rest of the time. 

3.2. Flow jields 
By means of velocity vectors (u, w) and temperature field ?’, instantaneous flow 
patterns are presented in a vertical cross-section of the domain for cases A ,  B and C 
(figures 5-7). Threshold values for the vector length differ from case to case in order 
to allow an easy qualitative comparison. It is obvious from the plots that at  t = 0.08 
hot fluid is moving up and cold fluid is moving down owing to pure restratification 
processes. The temperature isolines are compressed in the direction of parcel 
movements and are diluted in the ‘wake ’ of moving parcels. This effect is strongest 
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(a)12.57 

Z 6.28 

X x 
FIGURE 7 .  Same as figure 5 for case C with velocity magnitude between 0.05 and 0.5. 

for case B and an enhanced skewness of temperature gradients is to be expected. In 
general, the flows look similar in all three cases a t  t = 0.08 because the simulations 
were started from the identical temperature perturbation field. However, a t  t = 0.24 
the differences in flow behaviour of the three cases becomes more evident. Whereas 
cases A and C reveal almost identical flow pictures a t  t = 0.08, i.e. the flows are still 
buoyancy-driven and the resulting eddies last for a long time, the flow picture of case 
B has completely changed. The rather large upward and downward moving parcels 
a t  t = 0.08, giving an impression of an ‘ordered’ flow, have been strongly stirred a t  
t = 0.24, and suggest a highly chaotic and small-scale turbulent flow state. Although 
the flow is stably stratified and gravity oscillations are observed in the time series of 
potential and kinetic energies, no plot of flow fields reveals the presence of 
(monochromatic) internal gravity waves. 

4. Discussion 
We will now discuss the simulation results presented above with respect to their 

differences in anisotropy, nonlinearity and spectral behaviour. The effect of 
increasing the Prandtl number will also be considered. We discuss the evolution of 
the vertical heat flux first because this quantity reflects direct effects of buoyancy. 

4.1. Vertical heut f lux 
I n  all cases considered, the spatially averaged energy of the fluctuating flow is 
exchanged periodically between the reservoirs of the vertical component of the 
kinetic energy w’ and the potential energy (or T’). The energy exchange is performed 
by the heat flux which oscillates at the same frequency around the temporal 
mean value of zero (figure 8). Since the kinetic energy is zero initially, the heat flux 
is ‘ counter gradient ’ during the early stage of flow evolution. The heat flux changes 
from positive to negative values when the kinetic energy is maximum (figure 1) .  

Second-order statistics of a purely linear flow oscillate with exactly half the 
buoyancy period (Hunt, Stretch & Britter 1988). The time series of Ekin and Bpot 
(figure 1) and of Z l ( w ’ 1 ” )  (figure 8) indeed have oscillation periods close to  half the 
buoyancy period initially. For t > 1.5, the periods increase in cases A and B as a 
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FIGURE 8. Correlation coefficient of the vertical heat flux, D / ( w ' T )  va. t for -, case A ; 
, case B and ---, case C!. __ 

result of nonlinear interactions among colliding fluid parcels (spectral energy transfer 
from large to small scales, see below). Case C is the flow with the lowest initial excess 
of potential energy. Therefore it exhibits only a very weak nonlinearity and the 
oscillation periods of second-order statistics correspond to linear flow conditions. 

The results also differ with respect to the correlation-coefficient magnitude 
between vertical velocity and temperature perturbation a t  developed flow stages. 
Initially all cases behave similarly. At initialization, a correlation coefficient between 
w and T is meaningless since w is set to zero artificially, as we stated earlier. However, 
after the first timestep of integration every random perturbation T has created a 
corresponding fluctuation w according to ( 5 ) .  Everywhere in the domain hot fluid is 
ascending and cold fluid is descending. Hence, the correlation is positive and very 
high (Appendix), With time, the maximum correlation magnitude in each oscillation 
period decays since pressure forces feed the horizontal velocity components in order 
to satisfy mass continuity (equation (7)) .  The decay of the correlation coefficient is 
strongest for case B (weakest for case G) where we also observe large (small) 
dissipation rates e and x (figure 3). Again, this is due to strong (weak) nonlinear 
interactions among colliding fluid parcels. The strong decay of the correlation 
coefficient in case B also reflects the fairly strong approach to isotropy as suggested 
earlier. This will become more evident in the next section. 

The oscillating behaviour of the flux and the strong decrease of the maximum 
magnitude of its correlation coefficient with time have also been reported by 
Lienhard & Van Atta (1990) and Yoon & Warhaft (1990). Their laboratory 
experiments were designed to study the decay of grid-generated turbulence in 
thermally stratified wind tunnels. Owing to the different initiation of turbulence 
compared to our studies, they observe a downgradient heat (or density) flux first 
which later turns into a countergradient flux when the flow restratifies. Their test 
sections were too short to reveal more oscillations farther downstream. An oscillation 
period can therefore hardly be determined. However, strong evidence for a period 
close to half the buoyancy period (as in our case) is provided by several numerical 
simulations (Riley et al. 1981 ; MQtais & Herring 1989; Gerz & Schumann 1991) which 
used a non-zero initial kinetic energy field as the laboratory experiments. 
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FIGURE 9. Trace components of the anisotropy tensor, -, downstream b,, ; 
__ , cross-stream bZ2 and ---, vertical b,,, 0s. t for (a )  case A ,  (b)  case B and ( c )  case C. 
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4.2. Anisotropy 

We demonstrate the evolution of the anisotropy of the flow cases A ,  B and C by 
means of the trace components b,, (no summation) of the anisotropy tensor, 

in figure 9. Since the kinetic energy is fed by Epot, via w', the anisotropy is stored 
initially in the vertical component b,, and compensated by equal shares of the 
horizontal components b,, and bzz .  (Note that the trace of b, must vanish.) The 
anisotropy after the first timestep is identical for all flows since the same initialization 
spectrum S ( k )  for Epoto, equation (lo), is used. With time, the anisotropy 
measurements in case A drop a little and oscillate with roughly half the buoyancy 
period around a temporally constant value of b,, x 0.22 and b,, = b,, z - 0.11. The 
anisotropy of flow case C shows a temporally even increasing mean value up to 0.36 
for b,, a t  t = 3. In  both cases A and C the vertical component b,, is always positive, 
whereas other components are negative. A completely different anisotropy evolves in 
flow B. The anisotropy tensor components collapse between t = 0.5 and 1. During 
this period the r.m.s. velocities become almost equal, showing a consistent condition 
for isotropy (figure 4). 

Gerz & Xchumann ( lQ9l)  discussed the anisotropy of a stably stratified turbulent 
flow (see their figure 10a) which had been initialized by exclusively kinetic 
energy - in contrast to our studies here. The initial kinetic energy was distributed 
isotropically among the velocity components. Since stable stratification suppresses 
vertical motions of fluid parcels, the anisotropy in their study, manifested in negative 
values of bSS, was compensated by positive horizontal components. This is just the 
opposite of what we observed in our buoyancy-driven flow. Clearly the initial source 
of the energy determines the later stage of the fraction of kinetic energy between 
vertical arid horizontal Components. However, for case B the signs of components b,, 
and &,, switch at about t = 1 .O and b,, (b,,) remains persistently negative (positive). 
Hence, for t > 1.0 the flow resembles the turbulence fields studied by Gerz & 
Schumann (1991). The vertical motion is no longer enhanced by the initial excess of 
Epot but is suppressed owing to the stable stratification. 

The flow of case B must have been strongly stirred already within half a buoyancy 
period after initialization. The strong stirring quickly destroys the large overturning 
flow structures (figure 6 a )  and produces small-scale turbulence which is almost 
isotropically distributed (figure 6b) .  These findings also explain the change in the 
decay rate of E,,, for flow B to t -1 .3 ,  hence, to a rate typical for isotropic turbulence 
(figure 2 ) .  

4.3. Xpectral energy transfer 

One measure of nonlinearity of a flow is its spectral energy transfer. Here we consider 
the most energetic flow a t  Pr = 1, case B,  and calculate the transfer spectra of kinetic 
and available potential energy according to 

The hat, arid the asterisk indicate the Fourier transform and the complex conjugate 
component,, respectively. The index N denotes the nonlinear acceleration (second 
term of the left-hand side of (5) and (6)). The sum is taken over all wavenumber 
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FIGURE 10. 
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times 0.08 < t 6 0.48. Note the different ordinate scaling. 
Transfer spectra of (a)  kinetic energy T,,, and (6) potential energy of case B at 

vectors k which lie in a spherical shell of radius k and thickness Ak = 1. Since the 
spatial mean of the advective term of the energy balances vanishes in homogeneous 
flows, the sums of the transfer spectra T(k)  over all k must be zero. Hence, T ( k )  is 
the net transfer rate of kinetic or potential energy within the wavenumber space. 
T(k)  < 0 (> 0) describes a loss (gain) of energy a t  wavenumber k by nonlinear 
interactions. 

Figure 10 depicts Tki,(k) and Tp,(k) a t  several times within the first half buoyancy 
period of flow B and reveals a net transfer from large t o  small scales (from small to 
large values of k )  for both kinetic and potential energy. When the time series of x 
passes the initial minimum (figure 3), the amplitude of Tp,,(k) is largest a t  t = 0.08, 
but Tki,(k) is small. For t > 0.2 most of the potential energy is converted into kinetic 
energy by the vertical heat flux and Tkin exceeds Tpot. The flow evolution after t w 
0.5 is characterized by an almost equal distribution of energy among the kinetic and 
available potential reservoirs (figure 1, case B )  and by a smooth decay without 
considerable oscillations. This is also reflected in a reduced amount of spectral energy 
transfer rates. 

Case B has the strongest nonlinearity of all cases considered here, owing to its 
highest excess of initial potential energy. A strong transfer from large to small scales 
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t 

(mesh 64a, upper curves) and E' (mesh 1283, lower curves). 
,T Root means square values of -, u'; --, v'; ---, w'; _ _ ~  FIGURE 1 1. vs. t for cases E 

build up quickly and vanishes again until t z 0.5. Within this interval the original 
features of large temperature structures are destroyed and no evidence of oscillating 
flow parcels exists (figure 6 b ) .  The plots in figure 10 also harmonize within the picture 
of cascading eddies since the wavenumber klosslgain, which divides the energy-losing 
wavenumber range from the energy-gaining range, increases with time. In other 
words, energy is transferred successively to smaller and smaller scales. 

The facts and comparisons between the flow cases presented so far lead us to the 
conclusion that flow B reveals turbulence features in many aspects. Hence, we call 
it buoyancy-driven turbulence. The properties of flow B are a transient state of 
enhanced stirring and mixing, enhanced rates of dissipation of temperature 
fluctuations and a quick return to isotropy. 

4.4. Prandtl number effect 
So far we have discussed the dynamics of buoyancy-driven turbulence without the 
effects of the molecular Prandtl number Pr. Since one reason for the imbalance 
between potential and kinetic energy for decaying stratified turbulence is due to  
different molecular diffusivities of momentum and heat, it  is reasonable to expect 
that a change of Pr significantly affects the dynamics of the small scales of buoyancy- 
driven turbulence. We attempted simulations using Pr = 2 for each case A ,  B and C 
with the original 643 mesh grid and with the same initial conditions. We call these 
cases D,  E and F (see table 1).  By increasing the Prandtl number it must be 
guaranteed that the temperature field is properly resolved at  the smallest scales. 
Because case E is the most energetic case among all our simulations we performed 
another run E for this case using a higher resolution of 1283 meshes. We compare 
both cases with different resolutions in order to examine the effect of Pr, as well as 
to check the adequacy of the resolution for the other calculations, cases D and P. 

Figure 11 compares the early development of r.m.s. velocity and temperature for 
both resolutions (cases E and E'). The resolution differences are insignificant and 
disappear within the first half of the first buoyancy period, t z 0.5. Higher resolution 
leads to a higher amount of intensity a t  the small scales. This enhances dissipation 
such that the overall effect cancels soon. Comparison of energy and dissipation rate 
spectra for case E with those for E in figure 12 (e-f) reveals that the spectra of case 
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10' 

E' are all well resolved but that for case E small-scale potential energy piles up 
a t  high wavenumbers early. However, when the flow decays all spectra are well 
resolved again. Hence, we conclude that in our studies the effects of poor resolution 
on the flow behaviour are small and of transient nature. 

We now compare the two most energetic cases B (Pr = 1) and E (or E ,  Pr = 2 )  in 
order to recognize the influence of an increasing molecular Prandtl number Pr on the 
decay of stratified turbulence. We concentrate on the spectra of the dissipation rates 
of kinetic energy and potential energy, S,(k) and Sx(k) ,  and refer to figure 13 and 
figure 1 2 ( b , d , f ) .  Since x is inversely proportional to Pr (see (12)), S,(k) becomes 
smaller as P r  increases. On the other hand, the remaining small-scale temperature 
fluctuations in case E' increase S,(k) at small scales. Also the dynamical dissipation 
rate X,(k) is increased at large wavenumbers k when Pr is increased (compare figures 
13 (a)  and 12 ( b ) .  This implies that the remaining temperature fluctuations a t  large lc 
contribute to the buoyancy force and create small-scale velocity fluctuations 
(enhancing spectral kinetic energy S,,,(k) at small scales) which are then dissipated. 
Hence, an increase in the Prandtl number increases the portion of energy which is not 
directly dissipated by thermal conductivity but is transformed from available 
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potential energy to  kinetic energy and dissipated by molecular friction. The energy 
transformation is done by a small-scale heat flux which is persistently (i.e. not 
oscillating) counter gradient. This persistently positive heat flux a t  small scales is a 
feature of flows with Prandtl number of order one and larger (and with moderate 
Reynolds number) as reported by Gerz et al. (1989) and Gerz & Schumann (1991). 
Figure 14(6) displays the cospectrum ic*C,,(k) for flow E' with Pr = 2 a t  t = 0.16, 
0.32 and 0.48. Whereas C,,(k) oscillates a t  large scales (small lc) it always remains 
positive at small scales for k > 15. This effect is much weaker in flow case B with 
Pr = 1,  see figure 14(a). 

5. Implication to oceanic turbulence 
Although the initial condition of our simulation hardly exists in nature, the lessons 

drawn from our study can be applied to  oceanic turbulence. The measurement of 
turbulent velocity components is very difficult in comparison with scalar mea- 
surements, e.g. temperature and salinity. To date, most micro-structure experi- 
mentalists use the air-foil probe (Osborn & Crawford 1980) to measure turbulent 
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FIGURE 12. Energy and dissipation-rate spectra versus magnitude of the three-dimensional integer 
wavenumber vector k.  (a) kS,,,, ( b )  kSe, (c) k~!?~,,, and (d )  kS a t  times t = 0.16,0.32,0.48,0.64,0.80 
and 0.96 (from top to bottom) for E and ( e )  kSP,, and ( f )  kdx at times t = 0.16,0.32 and 0.48 (from 
top to bottom) for E'. 

velocity components successfully. However, operating this probe requires highly 
skilful engineering support, and the probe has to be custom made by each 
experimentalist. So, only a few groups have routinely been measuring turbulent 
velocity components. On the other hand, fluctuating temperature is straightforward 
to measure using a commercially available probe. The stratification number, which 
we introduced in this study, plays the major role of our buoyancy-driven turbulence, 
and this number is only a function of 'measurable' temperature scales. 

In  general, fluctuating velocity associates with fluctuating temperature ; thus the 
total energy consists of the sum of kinetic and potential energy. Here we consider 
that our buoyancy-driven turbulence (St < 1) serves a base state of stirring and 
mixing for a given on-going turbulent flow. Since we create a flow field from only the 
potential energy part of the given state (ignoring the existence of kinetic energy), it 
is important to know if the initial condition of the potential energy field exists in the 
ocean. Let us check a plausible range of the stratification number in the ocean. Both 
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r.m.s. temperature fluctuation and mean temperature gradient have been reported, 
e.g. Gregg (1975) and Marmorino, Dugan & Evans (1986). These quantities appear 
in the ranges 0.001 < T < 0.1 ("C) and 0.001 < dT,/dx < 0.05 ("C/m). Note that we 
do not consider a region whose fluctuating temperature is zero. Unfortunately, no 
integral scale of temperature has been reported so we assume this scale is in the order 
of magnitude of the Ozmidov length which is between 0.1 and 1 m. Then, a 
reasonable range for St is 0.001 < X t  < 50 which illustrates that buoyancy-driven 
turbulence (St < 1) may exist in the ocean. In  fact, H. Wijesekera (personal 
communication) performed preliminary calculations for the range of St from a recent 
oceanic observation data set. He found that the majority of turbulent patches 
appeared to show St > 1,  but a noticeable fraction of observed turbulent patches 
showed St < 1. 

Gibson (1980) proposes a hydrodynamic phase diagram to classify the state of 
turbulence. Although his interpretation of oceanic turbulence data is controversial, 
data from several laboratory and field experiments (Stillinger et al. 1983; Itsweire et 
al. 1986 ; Lienhard & Van Atta 1990 ; Ivey & Imberger 1991) support the fundamental 
idea behind the phase diagram. Yamazaki (1990) demonstrates that  the finding of 
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FIGURE 14. Heat-flux cospectrum kC,, at, several times for (a)  case B and ( b )  case E’. 

the laboratory experiments is applicable to the oceanic case. Whether the 
hydrodynamic phase diagram is a unique way to classify the dynamics of stratified 
turbulence or not, it seems worth examining the dynamics of our buoyancy-driven 
motions in terms of the diagram. Its abscissa is the mixing index R = s/(vP) 
(Yamazaki 1990) ; the ordinate is the activity parameter defined as 

Gibson’s original definition of A 2  is different from our formula by a numerical factor 
of 13 which he deduced as a transition value Atr. This value marks the onset of 
buoyancy effects on the dynamics of turbulence. Using the criterion of significant 
flow departure from the passive case behaviour, Itsweire et al. (1986) found a 
transition value of Atr = 5 . 5 1 2  in grid-generated turbulent water (Pr E 8), but 
Lienhard & Van Atta (1990) and the database by Gerz & Schumann (1991) yield 
much larger values of 38.7810.33 and 19.3k0.2, respectively, for air (Pr w 1) .  
However, when, in order to define the onset of buoyancy effects, a criterion of 
‘ restratification ’ is introduced where buoyancy length scale, w’/N, equals Ellison 
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lengthscale, T*/(dT,/dz), Lienhard & Van Atta (1990) find a value of 6.18+0.29. 
With this criterion a similar value of A;;. = 6.1 k0.3 can be deduced from the 
database by Gerz & Schumann. A further discussion of the transient values can be 
found in Itsweire et al. (1990). 

The transient dissipation rate etr = R,,vP is defined as the value at  which the 
mean vertical density flux is zero the first time ('extinction of turbulence'). The 
value of the transient mixing index ratio R,, M 16 has become a popular tool to argue 
mixing due to turbulence. Itsweire et al. (1986) measured R,, % 15 or 21 depending 
on the size of the turbulence-generating grid in their water channel. Lienhard & Van 
Atta (1990) report a value of 8.7 in the wind tunnel. Gerz & Schumann's (1991) data 
indicate a value of R,, % 8 in their shear flows. Gibson (1980) predicts a value of 
R,, = 30. 

Figure 15 displays the trajectories for all seven cases of our simulations in the 
hydrodynamic phase diagram. Owing to the lack of kinetic energy initially, all 
trajectories start at  the origin of the diagram. All flows have activity parameters 
which are below the reported transient values, although they are very close to some 
of them. Gibson's value of A,, = 13 has been deduced under the assumption of the 
existence of a universal inertial subrange of turbulence. Our flows do not exhibit such 
a subrange owing to the small value of Re. Figure 15 also reveals that the most 
energetic cases B, E and H exceed the reported transient dissipation rates during 
early evolution periods. 

We notice that with increasing initial potential energy and Prandtl number the 
dynamic range of both R and A2 expands. Flows with stratification number less than 
one (cases H ,  B and E )  exhibit the largest dynamic range in terms of R .  Flows with 
stratification number larger than one (cases C and F )  exhibit the largest range in 
terms of A2. We notice further that the mixing index is rather insensitive for 
variations in Pr but increasing with St-', i.e. growing buoyancy influence (see, from 
left to right, trajectories of cases C, A ,  H ,  B for Pr = 1 and F, D, E for Pr = 2). The 
activity parameter oscillates around a mean value of around 1.5. A decreasing St-' 
enhances the elongations of the oscillations and results in sharper angles of the 
trajectories, reflecting the oscillatory behaviour of increasingly linear fluctuations. 
Hence, the smoothness of the trajectory in the hydrodynamic phase diagram is 
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clearly related to the strong non-linearity of the dynamics. A2 is enhanced when Pr 
increases but the growth rate is less than (13) suggests. All together, from (13) we 
learn that the increase of R with St-l must be over-compensated by an increase of Co, 
whereas the increase of Pr must partly be compensated by growing Co. 

6. Conclusion and summary 
In order to identify the role of buoyancy forces during the final stage of decay of 

stratified turbulence, we studied the onset and decay of buoyancy-driven motions in 
a stably stratified fluid and adopted an idealistic ‘frozen fossil’ (Gibson 1991) 
turbulence state as the initial condition of our direct numerical simulation. In reality, 
this type of buoyancy-driven motion will be initiated before decaying turbulence 
reaches the state of our initial condition. However, our simulations demonstrate that 
an excess of potential energy may occasionally create a transient state of turbulence 
in which enhanced stirring and mixing is observed. 

Buoyancy-driven flows can be characterized by three free parameters, Re, Pr and 
St. Among these numbers the stratification number, St, is the most crucial for our 
system. 

Our results are summarized as follows: 
1. When X t  < 1, hence, when the initial gradient of fluctuating temperature 

exceeds the gradient of background temperature, the available potential energy 
creates an energetic motion which points to some typical features of turbulence. 
During an early phase the flow exhibits strong nonlinearity in the energy 
transformation and approaches quickly towards an isotropic state. One of the most 
striking phenomena we found from this type of buoyancy-driven flow is the enhanced 
rate of dissipation of temperature fluctuation. Particularly during the first half of the 
buoyancy period, a collision of oppositely moving warm and cold blobs of fluid 
(figure 6) creates an elevated temperature gradient and accelerates the dissipation of 
temperature fluctuations (figure 3).  As a result, the total energy reduction is also 
enhanced. 

2. On the other hand, when St > 1,  hence, when the background-temperature 
gradient is stronger than the fluctuating gradient, the available potential energy is 
too weak to create turbulence. The flow remains in an oscillating state with large and 
even increasing anisotropy. The statistics exhibit a nearly linear process, but still 
detectable nonlinearity exists in the flow-field variables. Although the symptom of 
the flow is indistinguishable from linear internal gravity waves (see e.g. the vertical 
heat-flux correlation coefficient in figure S), the visualization of the flow fields (figures 
5 and 7)  indicates that it is different from the conventional picture of internal waves. 
The flow appears rather as a field of randomly distributed oscillating pendulums. 

3. The effect of the molecular Prandtl number on the flow evolution is such that 
increasing Pr increases the turbulent kinetic energy of the flow since the portion of 
Epot which is not directly dissipated by thermal conductivity but is transformed into 
turbulent motion is augmented. The transformation is done by a persistently 
positive small-scale heat-flux. Thus, an increasing Prandtl number will emphasize 
the effect of buoyancy-driven turbulence. 

Finally, we note that because the stratification number is a measurable parameter 
in a field experiment such as oceanic turbulent measurements, it is useful to check 
whether the available potential energy is sufficient to create turbulence, i.e. St < 1 .  
Stratification numbers smaller than one may be achieved by a change in the 
background stratification owing to coexisting flow conditions such as large-scale 
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oscillations and small-scale turbulence. For example, when a Kelvin-Helmholtz 
billow detaches vertically from a strongly stratified layer into a weakly stratified 
layer (e.g. by shear), a sudden change from kinetic t o  potential energy is expected. 
The apparent temperature fluctuation T is elevated in the weak stratification ; the 
mean temperature gradient is low. Hence, both parameters act to reduce St. What 
role the stratification number plays in the mixing process is an increasing 
oceanographic question. 

Appendix 
We derive the value of the correlation coefficient Z / ( w ' T ' )  for small times, i.e. 

when t -to ($4.1). Then we can neglect nonlinear terms and molecular forces in ( 5 )  
and (6) but we have to consider pressure effects (J. Chasnov, personal com- 
munication), since any vertical motion created by buoyancy will produce horizontal 
motions instantaneously in an incompressible and quite fluid. A t  t = 0, w = 0 but 
T = To is non-zero and approximately constant. Hence, for small times we yield 
the approximate solutions in wavenumber space (including pressure gradient) 

w z t St-' To( 1 - k i / k 2 ) ,  T % To. 

For convenience we transform the equation for w into a spherical coordinate system 
(k, 8, q5) with k, = kcos0 and get 

w % tSt-lT,sin20. 

Multiplying w with T and volume-averaging we yield 

V Z  x Jl) St-l TE sin2 8 k2 sin 8 dk d8 d#J = t Xt-' @k3, 

V G  z I/J(tStK1 To)2 sin4 0 k2 sin 8 dk d0d+ = ( t8t- l  T0)2$3tk3, 

V ~ Z  {llqk2sinUdkdBd#J = c $ r k 3 .  

where V is the volume of a sphere with a given k.  Similarly we obtain 

Hence, the heat-flux correlation-coefficient is 

This analytical value which has also been reported by Batchelor et al. (1992) is very 
close to the value of 0.914 obtained from our numerical simulations (figure 8). 
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